Skip to main content
eScholarship
Open Access Publications from the University of California
Cover page of Lithium-Ion Transport and Exchange between Phases in a Concentrated Liquid Electrolyte Containing Lithium-Ion-Conducting Inorganic Particles

Lithium-Ion Transport and Exchange between Phases in a Concentrated Liquid Electrolyte Containing Lithium-Ion-Conducting Inorganic Particles

(2024)

Understanding Li+ transport in organic-inorganic hybrid electrolytes, where Li+ has to lose its organic solvation shell to enter and transport through the inorganic phase, is crucial to the design of high-performance batteries. As a model system, we investigate a range of Li+-conducting particles suspended in a concentrated electrolyte. We show that large Li1.3Al0.3Ti1.7P3O12 and Li6PS5Cl particles can enhance the overall conductivity of the electrolyte. When studying impedance using a cell with a large cell constant, the Nyquist plot shows two semicircles: a high-frequency semicircle related to ion transport in the bulk of both phases and a medium-frequency semicircle attributed to Li+ transporting through the particle/liquid interfaces. Contrary to the high-frequency resistance, the medium-frequency resistance increases with particle content and shows a higher activation energy. Furthermore, we show that small particles, requiring Li+ to overcome particle/liquid interfaces more frequently, are less effective in facilitating Li+ transport. Overall, this study provides a straightforward approach to study the Li+ transport behavior in hybrid electrolytes.

Cover page of Visualization of Porous Composite Battery Electrode Fabrication Dynamics for Different Formulations and Conditions Using Hard X‑ray Microradiography

Visualization of Porous Composite Battery Electrode Fabrication Dynamics for Different Formulations and Conditions Using Hard X‑ray Microradiography

(2024)

Porous composite battery electrode performance is influenced by a large number of manufacturing decisions. While it is common to evaluate only finished electrodes when making process adjustments, one must then make inferences about the fabrication process dynamics from static results, which makes process optimization very costly and time-consuming. To get information about the dynamics of the manufacturing processes of these composites, we have built a miniature coating and drying apparatus capable of fabricating lab-scale electrode laminates while operating within an X-ray beamline hutch. Using this tool, we have collected the first radiography image sequences of lab-scale battery electrode coatings in profile, taken throughout drying processes conducted under industrially relevant conditions. To assist with interpretation of these image sequences, we developed an automated image analysis program. Here, we discuss our observations of battery electrode slurry samples, including stratification and long-term fluid flow, and their relevance to composite electrode manufacturing.

Colloidal Stability of PFSA-Ionomer Dispersions Part II: Determination of Suspension pH Using Single-Ion Potential Energies

(2024)

Perfluorosulfonic acid (PFSA) ionomers serve a vital role in the performance and stability of fuel-cell catalyst layers. These properties, in turn, depend on the colloidal processing of precursor inks. To understand the colloidal structure of fuel-cell catalyst layers, we explore the aggregation of PFSA ionomers dissolved in water/alcohol solutions and relate the predicted aggregation to experimental measurements of solution pH. Not all side chains contribute to measured pH because of burying inside particle aggregates. To account for the measured degree of dissociation, a new description is developed for how PFSA aggregates interact with each other. The developed single-counterion electrostatic repulsive pair potential from Part I is incorporated into the Smoluchowski collision-based kinetics of interacting aggregates with buried side chains. We demonstrate that the surrounding solvent mixture affects the degree of aggregation as well as the pH of the system primarily through the solution dielectric permittivity, which drives the strength of the interparticle repulsive energies. Successful pH prediction of Nafion ionomer dispersions in water/n-propanol solutions validates the numerical calculations. Nafion-dispersion pH measurements serve as a surrogate for Nafion particle-size distributions. The model and framework can be leveraged to explore different ink formulations.

Modeling diurnal and annual ethylene generation from solar-driven electrochemical CO 2 reduction devices

(2024)

Integrated solar fuels devices for CO2 reduction (CO2R) are a promising technology class towards reducing carbon emissions. Designing integrated CO2R solar fuels devices requires careful co-design of electrochemical and photovoltaic components as well as consideration of the diurnal and seasonal effects of solar irradiance, temperature, and other meteorological factors expected for ‘on-sun’ deployment. Using a photovoltaic-electrochemical (PV-EC) platform, we developed a temperature and potential-dependent diurnal and annual model using experimentally-determined CO2R performance of Cu-based electrocatalysts, local meteorological data from the National Solar Radiation Database (NSRD), and modeled performance of commercial c-Si PVs. We simulated gaseous diurnal product outputs with and without the effects of ambient temperature. From these outputs, we observed seasonal variation in gaseous product generation, with up to two-fold increases in ethylene productivity between the Winter and Summer, analyzed the consequences of dynamic cloud coverage, and identified periods where device cooling/heating mechanisms could be implemented to maximize ethylene generation. Finally, we modeled the annual ethylene generation for a scaled 1 MW solar farm at three different locations (Beijing, CN; Sydney, AUS; Barstow, CA) to determine the consequences of local meteorological climates on PV-EC CO2R product output, recording a maximum ethylene output of 18.5 tonne per year at Barstow. Overall, this model presents a critical tool for streamlining the translation of experimental solar-driven electrochemical research to real-world implementation.

Colloidal Stability of PFSA-Ionomer Dispersions. Part I. Single-Ion Electrostatic Interaction Potential Energies

(2024)

Charged colloidal particles neutralized by a single counterion are increasingly important for many emerging technologies. Attention here is paid specifically to hydrogen fuel cells and water electrolyzers whose catalyst layers are manufactured from a perfluorinated sulfonic acid polymer (PFSA) suspended in aqueous/alcohol solutions. Partially dissolved PFSA aggregates, known collectively as ionomers, are stabilized by the electrostatic repulsion of overlapping diffuse double layers consisting of only protons dissociated from the suspended polymer. We denote such double layers containing no added electrolyte as "single ion". Size-distribution predictions build upon interparticle interaction potential energies from the Derjaguin-Landau-Verwey-Overbeek (DLVO) formalism. However, when only a single counterion is present in solution, classical DLVO electrostatic potential energies no longer apply. Accordingly, here a new formulation is proposed to describe how single-counterion diffuse double layers interact in colloidal suspensions. Part II (Srivastav, H.; Weber, A. Z.; Radke, C. J. Langmuir 2024 DOI: 10.1021/acs.langmuir.3c03904) of this contribution uses the new single-ion interaction energies to predict aggregated size distributions and the resulting solution pH of PFSA in mixtures of n-propanol and water. A single-counterion diffuse layer cannot reach an electrically neutral concentration far from a charged particle. Consequently, nowhere in the dispersion is the solvent neutral, and the diffuse layer emanating from one particle always experiences the presence of other particles (or walls). Thus, in addition to an intervening interparticle repulsive force, a backside osmotic force is always present. With this new construction, we establish that single-ion repulsive pair interaction energies are much larger than those of classical DLVO electrostatic potentials. The proposed single-ion electrostatic pair potential governs dramatic new dispersion behavior, including dispersions that are stable at a low volume fraction but unstable at a high volume fraction and finite volume-fraction dispersions that are unstable with fine particles but stable with coarse particles. The proposed single-counterion electrostatic pair potential provides a general expression for predicting colloidal behavior for any charged particle dispersion in ionizing solvents with no added electrolyte.

Cover page of Relating Solvent Parameters to Electrochemical Properties to Predict the Electrochemical Performance of Vanadium Acetylacetonate for Non-Aqueous Redox Flow Batteries

Relating Solvent Parameters to Electrochemical Properties to Predict the Electrochemical Performance of Vanadium Acetylacetonate for Non-Aqueous Redox Flow Batteries

(2024)

Non-aqueous redox flow batteries have shown promise for applications in grid energy storage. Increasing the efficiency of these batteries by developing the electrolyte chemistries is needed. Herein, we investigate the correlation between solvent properties and the electrochemical parameters of vanadium acetylacetonate V(acac)3. Using cyclic voltammetry (CV) and rotating disk electrode experiments (RDE), we show that trends in the performance of the V(acac)3 kinetics are directly related to solvent properties. We found strong relationships between the solvents polarity, viscosity, and donor number with the electrochemical behavior of V(acac)3 in terms of the electrochemical working widow, electron kinetics and stability towards cycling. Based on these finding, we also demonstrate how solvent selection can be improved with limited a priori knowledge.

Cover page of Oxygen Transport through Amorphous Cathode Coatings in Solid-State Batteries.

Oxygen Transport through Amorphous Cathode Coatings in Solid-State Batteries.

(2024)

All solid-state batteries (SSBs) are considered the most promising path to enabling higher energy-density portable energy, while concurrently improving safety as compared to current liquid electrolyte solutions. However, the desire for high energy necessitates the choice of high-voltage cathodes, such as nickel-rich layered oxides, where degradation phenomena related to oxygen loss and structural densification at the cathode surface are known to significantly compromise the cycle and thermal stability. In this work, we show, for the first time, that even in an SSB, and when protected by an intact amorphous coating, the LiNi0.5Mn0.3Co0.2O2 (NMC532) surface transforms from a layered structure into a rocksalt-like structure after electrochemical cycling. The transformation of the surface structure of the Li3B11O18 (LBO)-coated NMC532 cathode in a thiophosphate-based solid-state cell is characterized by high-resolution complementary electron microscopy techniques and electron energy loss spectroscopy. Ab initio molecular dynamics corroborate facile transport of O2- in the LBO coating and in other typical coating materials. This work identifies that oxygen loss remains a formidable challenge and barrier to long-cycle life high-energy storage, even in SSBs with durable, amorphous cathode coatings, and directs attention to considering oxygen permeability as an important new design criteria for coating materials.

Cover page of Argyrodite-Li6PS5Cl/Polymer-based Highly Conductive Composite Electrolyte for All-Solid-State Batteries.

Argyrodite-Li6PS5Cl/Polymer-based Highly Conductive Composite Electrolyte for All-Solid-State Batteries.

(2024)

Solid-state batteries (SSBs) that incorporate the argyrodite-Li6PS5Cl (LPSCl) electrolyte hold potential as substitutes for conventional lithium-ion batteries (LIBs). However, the mismatched interface between the LPSCl electrolyte and electrodes leads to increased interfacial resistance and the rapid growth of lithium (Li) dendrites. These factors significantly impede the feasibility of their widespread industrial application. In this study, we developed a composite electrolyte of the LPSCl/polymer to enhance the contact between the electrolyte and electrodes and suppress dendrite formation at the grain boundary of the LPSCl ceramic. The monomer, triethylene glycol dimethacrylate (TEGDMA), is utilized for in situ polymerization through thermal curing to create the argyrodite LPSCl/polymer composite electrolyte. Additionally, the ball-milling technique was employed to modify the morphology and particle size of the LPSCl ceramic. The ball-milled LPSCl/polymer composite electrolyte demonstrates slightly higher ionic conductivity (ca. 2.21 × 10-4 S/cm) compared to the as-received LPSCl/polymer composite electrolyte (ca. 1.65 × 10-4 S/cm) at 25 °C. Furthermore, both composite electrolytes exhibit excellent compatibility with Li-metal and display cycling stability for up to 1000 h (375 cycles), whereas the as-received LPSCl and ball-milled LPSCl electrolytes maintain stability for up to 600 h (225 cycles) at a current density of 0.4 mA/cm2. The SSB with the ball-milled LPSCl/polymer composite electrolyte delivers high specific discharge capacity (138 mA h/g), Coulombic efficiency (99.97%), and better capacity retention at 0.1C, utilizing the battery configuration of coated NMC811//electrolyte//Li-Indium (In) at 25 °C.

Cover page of Fluorination Effect on Lithium- and Manganese-Rich Layered Oxide Cathodes.

Fluorination Effect on Lithium- and Manganese-Rich Layered Oxide Cathodes.

(2024)

Lithium- and manganese-rich (LMR) layered oxides are promising high-energy cathodes for next-generation lithium-ion batteries, yet their commercialization has been hindered by a number of performance issues. While fluorination has been explored as a mitigating approach, results from polycrystalline-particle-based studies are inconsistent and the mechanism for improvement in some reports remains unclear. In the present study, we develop an in situ fluorination method that leads to fluorinated LMR with no apparent impurities. Using well-defined single-crystal Li1.2Ni0.2Mn0.6O2 (LNMO) as a platform, we show that a high fluorination level leads to decreased oxygen activities, reduced side reactions at high voltages, and a broadly improved cathode performance. Detailed characterization reveals a particle-level Mn3+ concentration gradient from the surface to the bulk of fluorinated-LNMO crystals, ascribed to the formation of a Ni-rich LizNixMn2-xO4-yFy (x > 0.5) spinel phase on the surface and a spinel-layered coherent structure in the bulk where domains of a LiNi0.5Mn1.5O4 high-voltage spinel phase are integrated into the native layered framework. This work provides fundamental understanding of the fluorination effect on LMR and key insights for future development of high-energy Mn-based cathodes with an intergrown/composite crystal structure.

Thermoelectric performance of high aspect ratio double-sided silicon nanowire arrays

(2024)

Roughly, 50% of primary energy worldwide is rejected as waste heat over a wide range of temperatures. Waste heat above 573 K has the highest Carnot potential ( > 50 % ) to be converted to electricity due to higher Carnot efficiency. Thermoelectric (TE) materials have gained significant attention as potential candidates for efficient thermal energy conversion devices. Silicon nanowires (SiNWs) are promising materials for TE devices due to their unique electrical and thermal properties. In this study, we report the successful fabrication of high-quality double-sided SiNW arrays using advanced techniques. We engineered the double-sided structure to increase the surface area and the number of TE junctions, enhancing TE energy conversion efficiency. We also employed non-agglomeration wire tip engineering to ensure uniformity of the SiNWs and designed effective Ohmic contacts to improve overall TE efficiency. Additionally, we post-doped the double-sided SiNW arrays to achieve high electrical conductivity. Our results showed a significant improvement in the TE performance of the SiNW array devices, with a maximum figure-of-merit (ZT) value of 0.24 at 700 K, fabricated from the single SiNW with ZT of 0.71 at 700 K in our previous work [Yang et al., Nat. Commun. 12(1), 3926(2021)].