Skip to main content
eScholarship
Open Access Publications from the University of California

About

Our world-renowned scientists and strong support staff perform analysis, research, and development in a wide range of topics to improve infrastructure and maximize cost savings in energy use. ETA regularly works on both domestic and international clean-energy research that has global impact and reach -- our work positively affects the lives of people around the world.

Energy Technologies

There are 4690 publications in this collection, published between 1933 and 2024.
Bldg Technology Urban Systems (1395)

An Agent-Based Occupancy Simulator for Building Performance Simulation:

Traditionally, in building energy modeling (BEM) programs, occupancy inputs are deterministic and less indicative of real world scenarios, contributing to discrepancies between simulated and actual energy use in buildings. This paper presents an agent-based occupancy simulator, which models each occupant as an agent with specified movement events and statistics of space uses. To reduce the amount of data inputs, the simulator allows users to group occupants with similar behaviors as an occupant type, and spaces with similar function as a space type. It is a web-based application with friendly graphical user interface, cloud computing, and data storage. A case study is presented to demonstrate the usage of the occupancy simulator and its integration with EnergyPlus and obFMU. It first shows the required data inputs and the results from the occupancy simulator. Then, the generated occupant schedules are used in the EnergyPlus and obFMU simulation to evaluate the impacts of occupant behavior on building energy performance. The simulation results indicate that the occupancy simulator can capture the diversity of space’s occupancy behavior rather than the static weekly profiles, and can generate realistic occupancy schedules to support building performance simulation.

China's energy consumption in the building sector: A Statistical Yearbook-Energy Balance Sheet based splitting method

China's energy consumption in the building sector (BEC) is not counted as a separate type of energy consumption, but divided and mixed in other sectors in China's statistical system. This led to the lack of historical data on China's BEC. Moreover, previous researches' shortages such as unsystematic research on BEC, various estimation methods with complex calculation process, and difficulties in data acquisition resulted in “heterogeneous” of current BEC in China. Aiming to these deficiencies, this study proposes a set of China building energy consumption calculation method (CBECM) by splitting out the building related energy consumption mixed in other sectors in the composition of China Statistical Yearbook-Energy Balance Sheet. Then, China's BEC from 2000 to 2014 are estimated using CBECM and compared with other studies. Results show that, from 2000 to 2014, China's BEC increased 1.7 times, rising from 301 to 814 million tons of standard coal consumed, with the BEC percentage of total energy consumption stayed relatively stable between 17.7% and 20.3%. By comparison, we find that our results are reliable and the CBECM has the following advantages over other methods: data source is authoritative, calculation process is concise, and it is easy to obtain time series data on BEC etc. The CBECM is particularly suitable for the provincial government to calculate the local BEC, even in the circumstance with statistical yearbook available only.

Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China

In areas with a dry and hot climate, factors such as strong solar radiation, high temperature, low humidity, dazzling light, and dust storms can tremendously reduce people's thermal comfort. Therefore, researchers are paying more attention to outdoor thermal comfort in urban environments as part of urban design. This study proposed an automatic workflow to optimize urban spatial forms with the aim of improvement of outdoor thermal comfort conditions, characterized by the universal thermal climate index (UTCI). A city with a dry and hot climate-Kashgar, China-is further selected as an actual case study of an urban block and Rhino & Grasshopper is the platform used to conduct simulation and optimization process with the genetic algorithm. Results showed that in summer, the proposed method can reduce the averaged UTCI from 31.17 to 27.43 °C, a decrease of about 3.74 °C, and reduce mean radiation temperature (MRT) from 43.94 to 41.29 °C, a decrease of about 2.65 °C.

1392 more worksshow all
Energy Analysis Env Impacts (2035)

Large Enhancement in the Heterogeneous Oxidation Rate of Organic Aerosols by Hydroxyl Radicals in the Presence of Nitric Oxide

In the troposphere, the heterogeneous lifetime of an organic molecule in an aerosol exposed to hydroxyl radicals (OH) is thought to be weeks, which is orders of magnitude slower than the analogous gas phase reactions (hours). Here, we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10-50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. A kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.

Achieving Deep Cuts in the Carbon Intensity of U.S. Automobile Transportation by 2050: Complementary Roles for Electricity and Biofuels

Passenger cars in the United States (U.S.) rely primarily on petroleum-derived fuels and contribute the majority of U.S. transportation-related greenhouse gas (GHG) emissions. Electricity and biofuels are two promising alternatives for reducing both the carbon intensity of automotive transportation and U.S. reliance on imported oil. However, as standalone solutions, the biofuels option is limited by land availability and the electricity option is limited by market adoption rates and technical challenges. This paper explores potential GHG emissions reductions attainable in the United States through 2050 with a county-level scenario analysis that combines ambitious plug-in hybrid electric vehicle (PHEV) adoption rates with scale-up of cellulosic ethanol production. With PHEVs achieving a 58% share of the passenger car fleet by 2050, phasing out most corn ethanol and limiting cellulosic ethanol feedstocks to sustainably produced crop residues and dedicated crops, we project that the United States could supply the liquid fuels needed for the automobile fleet with an average blend of 80% ethanol (by volume) and 20% gasoline. If electricity for PHEV charging could be supplied by a combination of renewables and natural-gas combined-cycle power plants, the carbon intensity of automotive transport would be 79 g CO2e per vehicle-kilometer traveled, a 71% reduction relative to 2013.

2032 more worksshow all
Energy Storage & Distributed Resources (1516)

Synthesis and Electrochemistry of Li3MnO4: Mn in the +5 Oxidation State

Computational and experimental work directed at exploring the electrochemical properties of tetrahedrally coordinated Mn in the +5 oxidation state is presented. Specific capacities of nearly 700 mAh/g are predicted for the redox processes of LixMnO4 complexes based on two two-phase reactions. One is topotactic extraction of Li from Li3MnO4 to form LiMnO4 and the second is topotactic insertion of Li into Li3MnO4 to form Li5MnO4. In experiments, it is found that the redox behavior of Li3MnO4 is complicated by disproportionation of Mn5+ in solution to form Mn4+ and Mn7+ and byother irreversible processes; although an initial capacity of about 275 mAh/g in lithiumcells was achieved. Strategies based on structural considerations to improve the electrochemical properties of MnO4n- complexes are given.

Permeation of CO2 and N2 through glassy poly(dimethyl phenylene) oxide under steady‐ and presteady‐state conditions

Glassy polymers are often used for gas separations because of their high selectivity. Although the dual-mode permeation model correctly fits their sorption and permeation isotherms, its physical interpretation is disputed, and it does not describe permeation far from steady state, a condition expected when separations involve intermittent renewable energy sources. To develop a more comprehensive permeation model, we combine experiment, molecular dynamics, and multiscale reaction–diffusion modeling to characterize the time-dependent permeation of N2 and CO2 through a glassy poly(dimethyl phenylene oxide) membrane, a model system. Simulations of experimental time-dependent permeation data for both gases in the presteady-state and steady-state regimes show that both single- and dual-mode reaction–diffusion models reproduce the experimental observations, and that sorbed gas concentrations lag the external pressure rise. The results point to environment-sensitive diffusion coefficients as a vital characteristic of transport in glassy polymers.

1513 more worksshow all