Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

IMMU-11. SPATIOTEMPORAL IMMUNOGENOMIC ANALYSIS OF THE T-CELL REPERTOIRE IN IDH-MUTANT LOWER GRADE GLIOMAS

Abstract

Abstract The design and evaluation of immunotherapies in IDH-mutant lower grade gliomas (LGG) is hindered by a poor understanding of the LGG T-cell repertoire. We present data on the temporal evolution, intratumoral spatial distribution, and prognostic value of the T-cell repertoire in IDH-mutant LGGs. We performed immunogenomic profiling using T-cell receptor beta-chain sequencing of 163 glioma and peripheral blood samples from 33 immunotherapy-naive glioma patients (22 astrocytomas, 11 oligodendrogliomas). T-cell repertoire evolution was analyzed in a subset of 26 patients (69 samples) with matched primary (WHO grade II) and recurrent (WHO grade II-IV) glioma samples. T-cell repertoire diversity was defined as the number of unique T-cell clonotypes by V-gene, J-gene, and CDR3 nucleotide sequences. Malignant transformed (Grade III or IV) recurrent gliomas demonstrated increased T-cell repertoire diversity compared to their patient-matched primary tumors (p=0.0023), but grade II recurrences did not show the same increased diversity (p=0.26). This increase in T-cell repertoire diversity was greater in patients who underwent transformation in the context of TMZ-associated hypermutation compared to spontaneously transformed counterparts (p=0.035). In grade II primary astrocytomas (n=17), T-cell repertoire diversity above the median (186 unique T-cell clonotypes per sample) was associated with worse transformation-free (HR=4.2, p=0.045) and overall survival (HR=6.4, p=0.025). Next, we evaluated intratumoral immune heterogeneity in 7 patients by sampling from up to 10 distinct and maximally-separated intratumoral sites per LGG (64 samples). Eighty-two to 96% of unique clonotypes within a given tumor were present only within a single sampled site. Despite this heterogeneity, six LGG patients harbored T-cell clonotypes present tumor-wide across all sampled sites within a given tumor. Ten of 24 (42%) tumor-wide T-cell clonotypes were enriched in the glioma compared to matched peripheral blood, suggesting glioma-specificity. Taken together, T-cell receptor profiling in LGGs may have utility both as a prognostic biomarker and to identify glioma-specific T-cells.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View