Effect of Nozzle Curvature on Supersonic Gas Jets Used in Laser-Plasma Acceleration
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Effect of Nozzle Curvature on Supersonic Gas Jets Used in Laser-Plasma Acceleration

Abstract

Supersonic gas jets produced by converging-diverging (C-D) nozzles are commonly used as targets for laser-plasma acceleration (LPA) experiments. A major point of interest for these targets is the gas density at the region of interaction where the laser ionizes the gas plume to create a plasma, providing the acceleration structure. Tuning the density profiles at this interaction region is crucial to LPA optimization. A "flat-top" density profile is desired at this line of interaction to control laser propagation and high energy electron acceleration, while a short high-density profile is often preferred for acceleration of lower-energy tightly-focused laser-plasma interactions. A particular design parameter of interest is the curvature of the nozzle's diverging section. We examine three nozzle designs with different curvatures: the concave "bell", straight conical and convex "trumpet" nozzles. We demonstrate that, at mm-scale distances from the nozzle exit, the trumpet and straight nozzles, if optimized, produce "flat-top" density profiles whereas the bell nozzle creates focused regions of gas with higher densities. An optimization procedure for the trumpet nozzle is derived and compared to the straight nozzle optimization process. We find that the trumpet nozzle, by providing an extra parameter of control through its curvature, is more versatile for creating flat-top profiles and its optimization procedure is more refined compared to the straight nozzle and the straight nozzle optimization process. We present results for different nozzle designs from computational fluid dynamics (CFD) simulations performed with the program ANSYS Fluent and verify them experimentally using neutral density interferometry.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View