Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

β-Hairpin Alignment Alters Oligomer Formation in Aβ-Derived Peptides.

Abstract

Amyloid-β (Aβ) forms heterogeneous oligomers, which are implicated in the pathogenesis of Alzheimers disease (AD). Many Aβ oligomers consist of β-hairpin building blocks─Aβ peptides in β-hairpin conformations. β-Hairpins of Aβ can adopt a variety of alignments, but the role that β-hairpin alignment plays in the formation and heterogeneity of Aβ oligomers is poorly understood. To explore the effect of β-hairpin alignment on the oligomerization of Aβ peptides, we designed and studied two model peptides with two different β-hairpin alignments. Peptides Aβm17-36 and Aβm17-35 mimic two different β-hairpins that Aβ can form, the Aβ17-36 and Aβ17-35 β-hairpins, respectively. These hairpins are similar in composition but differ in hairpin alignment, altering the facial arrangements of the side chains of the residues that they contain. X-ray crystallography and SDS-PAGE demonstrate that the difference in facial arrangement between these peptides leads to distinct oligomer formation. In the crystal state, Aβm17-36 forms triangular trimers that further assemble to form hexamers, while Aβm17-35 forms tetrameric β-barrels. In SDS-PAGE, Aβm17-36 assembles to form a ladder of oligomers, while Aβm17-35 either assembles to form a dimer or does not assemble at all. The differences in the behavior of Aβm17-36 and Aβm17-35 suggest β-hairpin alignment as a source of the observed heterogeneity of Aβ oligomers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View