Skip to main content
eScholarship
Open Access Publications from the University of California

Electrical and Computer Engineering - Open Access Policy Deposits

This series is automatically populated with publications deposited by UCLA Henry Samueli School of Engineering and Applied Science Department of Electrical and Computer Engineering researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Digital Alloy-Grown InAs/GaAs Short-Period Superlattices with Tunable Band Gaps for Short-Wavelength Infrared Photodetection.

Digital Alloy-Grown InAs/GaAs Short-Period Superlattices with Tunable Band Gaps for Short-Wavelength Infrared Photodetection.

(2024)

The InGaAs lattice-matched to InP has been widely deployed as the absorption material in short-wavelength infrared photodetection applications such as imaging and optical communications. Here, a series of digital alloy (DA)-grown InAs/GaAs short-period superlattices were investigated to extend the absorption spectral range. The scanning transmission electron microscopy, high-resolution X-ray diffraction, and atomic force microscopy measurements exhibit good material quality, while the photoluminescence (PL) spectra demonstrate a wide band gap tunability for the InGaAs obtained via the DA growth technique. The photoluminescence peak can be effectively shifted from 1690 nm (0.734 eV) for conventional random alloy (RA) InGaAs to 1950 nm (0.636 eV) for 8 monolayer (ML) DA InGaAs at room temperature. The complete set of optical constants of DA InGaAs has been extracted via the ellipsometry technique, showing the absorption coefficients of 398, 831, and 1230 cm-1 at 2 μm for 6, 8, and 10 ML DA InGaAs, respectively. As the period thickness increases for DA InGaAs, a red shift at the absorption edge can be observed. Furthermore, the simulated band structures of DA InGaAs via an environment-dependent tight binding model agree well with the measured photoluminescence peaks, which is advantageous for a physical understanding of band structure engineering via the DA growth technique. These investigations and results pave the way for the future utilization of the DA-grown InAs/GaAs short-period superlattices as a promising absorption material choice to extend the photodetector response beyond the cutoff wavelength of random alloy InGaAs.

Cover page of All-optical image denoising using a diffractive visual processor.

All-optical image denoising using a diffractive visual processor.

(2024)

Image denoising, one of the essential inverse problems, targets to remove noise/artifacts from input images. In general, digital image denoising algorithms, executed on computers, present latency due to several iterations implemented in, e.g., graphics processing units (GPUs). While deep learning-enabled methods can operate non-iteratively, they also introduce latency and impose a significant computational burden, leading to increased power consumption. Here, we introduce an analog diffractive image denoiser to all-optically and non-iteratively clean various forms of noise and artifacts from input images - implemented at the speed of light propagation within a thin diffractive visual processor that axially spans <250 × λ, where λ is the wavelength of light. This all-optical image denoiser comprises passive transmissive layers optimized using deep learning to physically scatter the optical modes that represent various noise features, causing them to miss the output image Field-of-View (FoV) while retaining the object features of interest. Our results show that these diffractive denoisers can efficiently remove salt and pepper noise and image rendering-related spatial artifacts from input phase or intensity images while achieving an output power efficiency of ~30-40%. We experimentally demonstrated the effectiveness of this analog denoiser architecture using a 3D-printed diffractive visual processor operating at the terahertz spectrum. Owing to their speed, power-efficiency, and minimal computational overhead, all-optical diffractive denoisers can be transformative for various image display and projection systems, including, e.g., holographic displays.

Cover page of Free-electron crystals for enhanced X-ray radiation.

Free-electron crystals for enhanced X-ray radiation.

(2024)

Bremsstrahlung-the spontaneous emission of broadband radiation from free electrons that are deflected by atomic nuclei-contributes to the majority of X-rays emitted from X-ray tubes and used in applications ranging from medical imaging to semiconductor chip inspection. Here, we show that the bremsstrahlung intensity can be enhanced significantly-by more than three orders of magnitude-through shaping the electron wavefunction to periodically overlap with atoms in crystalline materials. Furthermore, we show how to shape the bremsstrahlung X-ray emission pattern into arbitrary angular emission profiles for purposes such as unidirectionality and multi-directionality. Importantly, we find that these enhancements and shaped emission profiles cannot be attributed solely to the spatial overlap between the electron probability distribution and the atomic centers, as predicted by the paraxial and non-recoil theory for free electron light emission. Our work highlights an unprecedented regime of free electron light emission where electron waveshaping provides multi-dimensional control over practical radiation processes like bremsstrahlung. Our results pave the way towards greater versatility in table-top X-ray sources and improved fundamental understanding of quantum electron-light interactions.

Cover page of Enhancing mitosis quantification and detection in meningiomas with computational digital pathology.

Enhancing mitosis quantification and detection in meningiomas with computational digital pathology.

(2024)

Mitosis is a critical criterion for meningioma grading. However, pathologists assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithms ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.

Cover page of Interpretable inverse-designed cavity for on-chip nonlinear photon pair generation

Interpretable inverse-designed cavity for on-chip nonlinear photon pair generation

(2023)

Inverse design is a powerful tool in wave physics for compact, high-performance devices. To date, applications in photonics have mostly been limited to linear systems and it has rarely been investigated or demonstrated in the nonlinear regime. In addition, the “black box” nature of inverse design techniques has hindered the understanding of optimized inverse-designed structures. We propose an inverse design method with interpretable results to enhance the efficiency of on-chip photon generation rate through nonlinear processes by controlling the effective phase-matching conditions. We fabricate and characterize a compact, inverse-designed device using a silicon-on-insulator platform that allows a spontaneous four-wave mixing process to generate photon pairs at a rate of 1.1 MHz with a coincidence to accidental ratio of 162. Our design method accounts for fabrication constraints and can be used for scalable quantum light sources in large-scale communication and computing applications.

Cover page of Optical control of ultrafast structural dynamics in a fluorescent protein.

Optical control of ultrafast structural dynamics in a fluorescent protein.

(2023)

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.

Cover page of Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography.

Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography.

(2023)

Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.

Cover page of Learning diffractive optical communication around arbitrary opaque occlusions.

Learning diffractive optical communication around arbitrary opaque occlusions.

(2023)

Free-space optical communication becomes challenging when an occlusion blocks the light path. Here, we demonstrate a direct communication scheme, passing optical information around a fully opaque, arbitrarily shaped occlusion that partially or entirely occludes the transmitters field-of-view. In this scheme, an electronic neural network encoder and a passive, all-optical diffractive network-based decoder are jointly trained using deep learning to transfer the optical information of interest around the opaque occlusion of an arbitrary shape. Following its training, the encoder-decoder pair can communicate any arbitrary optical information around opaque occlusions, where the information decoding occurs at the speed of light propagation through passive light-matter interactions, with resilience against various unknown changes in the occlusion shape and size. We also validate this framework experimentally in the terahertz spectrum using a 3D-printed diffractive decoder. Scalable for operation in any wavelength regime, this scheme could be particularly useful in emerging high data-rate free-space communication systems.

Cover page of Rapid sensing of hidden objects and defects using a single-pixel diffractive terahertz sensor.

Rapid sensing of hidden objects and defects using a single-pixel diffractive terahertz sensor.

(2023)

Terahertz waves offer advantages for nondestructive detection of hidden objects/defects in materials, as they can penetrate most optically-opaque materials. However, existing terahertz inspection systems face throughput and accuracy restrictions due to their limited imaging speed and resolution. Furthermore, machine-vision-based systems using large-pixel-count imaging encounter bottlenecks due to their data storage, transmission and processing requirements. Here, we report a diffractive sensor that rapidly detects hidden defects/objects within a 3D sample using a single-pixel terahertz detector, eliminating sample scanning or image formation/processing. Leveraging deep-learning-optimized diffractive layers, this diffractive sensor can all-optically probe the 3D structural information of samples by outputting a spectrum, directly indicating the presence/absence of hidden structures or defects. We experimentally validated this framework using a single-pixel terahertz time-domain spectroscopy set-up and 3D-printed diffractive layers, successfully detecting unknown hidden defects inside silicon samples. This technique is valuable for applications including security screening, biomedical sensing and industrial quality control.

Cover page of Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions.

Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions.

(2023)

Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tc fault-tolerant qubit implementations from a device perspective.