648 Hilbert-space dimensionality in a biphoton frequency comb: entanglement of formation and Schmidt mode decomposition
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

648 Hilbert-space dimensionality in a biphoton frequency comb: entanglement of formation and Schmidt mode decomposition

Abstract

Qubit entanglement is a valuable resource for quantum information processing, where increasing its dimensionality provides a pathway towards higher capacity and increased error resilience in quantum communications, cluster computation and quantum phase measurements. Time-frequency entanglement, a continuous variable subspace, enables the high-dimensional encoding of multiple qubits per particle, bounded only by the spectral correlation bandwidth and readout timing jitter. Extending from a dimensionality of two in discrete polarization variables, here we demonstrate a hyperentangled, mode-locked, biphoton frequency comb with a time-frequency Hilbert space dimensionality of at least 648. Hong-Ou-Mandel revivals of the biphoton qubits are observed with 61 time-bin recurrences, biphoton joint spectral correlations over 19 frequency-bins, and an overall interference visibility of the high-dimensional qubits up to 98.4%. We describe the Schmidt mode decomposition analysis of the high-dimensional entanglement, in both time- and frequency-bin subspaces, not only verifying the entanglement dimensionality but also examining the time-frequency scaling. We observe a Bell violation of the high-dimensional qubits up to 18.5 standard deviations, with recurrent correlation-fringe Clauser-Horne-Shimony-Holt S-parameter up to 2.771. Our biphoton frequency comb serves as a platform for dense quantum information processing and high-dimensional quantum key distribution.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View