Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Subdiffusive transport of fluctuating elastic filaments in cellular flows

Published Web Location

https://doi.org/10.1063/1.4812794
Abstract

The dynamics and transport properties of Brownian semiflexible filaments suspended in a two-dimensional array of counter-rotating Taylor-Green vortices are investigated using numerical simulations based on slender-body theory for low-Reynolds-number hydrodynamics. Such a flow setup has been previously proposed to capture some of the dynamics of biological polymers in motility assays. A buckling instability permits elastic filaments to migrate across such a cellular lattice in a "Brownian-like" manner even in the athermal limit. However, thermal fluctuations alter these dynamics qualitatively by driving polymers across streamlines, leading to their frequent trapping within vortical cells. As a result, thermal fluctuations, characterized here by the persistence length, are shown to lead to subdiffusive transport at long times, and this qualitative shift in behavior is substantiated by the slow decay of waiting-time distributions as a consequence of trapping events during which the filaments remain in a particular cell for extended periods of time. Velocity and mass distributions of polymers reveal statistically preferred positions within a unit cell that further corroborate this systematic shift from transport to trapping with increasing fluctuations. Comparisons to results from a continuum model for the complementary case of rigid Brownian rods in such a flow also highlight the role of elastic flexibility in dictating the nature of polymer transport. © 2013 AIP Publishing LLC.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View