Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Electronic Theses and Dissertations bannerUC Irvine

An orthogonal DNA replication system for in vivo continuous directed evolution

Creative Commons 'BY' version 4.0 license
Abstract

Directed evolution is a powerful approach for engineering biomolecules and understanding the basic principles of adaptation. However, experimental strategies for directed evolution are notoriously labor-intensive and low-throughput, limiting access to demanding functions, multiple functions in parallel, and the study of molecular evolution in replicate. Here, I describe OrthoRep, an orthogonal DNA polymerase-plasmid pair in yeast that stably mutates ~100,000-fold faster than the host genome in vivo, exceeding the error threshold of genomic replication that causes single-generation extinction. User-defined genes in OrthoRep continuously and rapidly evolve through serial passaging, a highly straightforward and scalable process. Using OrthoRep, I evolved malarial DHFR to strongly resist the drug pyrimethamine in 90 independent replicates. This large-scale experiment revealed a more complex fitness landscape than previously realized, including new resistant alleles, common adaptive trajectories constrained by epistasis, rare outcomes that avoid a frequent early adaptive mutation, and a suboptimal fitness peak that occasionally traps evolving populations. OrthoRep enables a new paradigm of routine, high-throughput evolution of biomolecular and cellular function.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View