Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Caffeine Prevents Transcription Inhibition and P-TEFb/7SK Dissociation Following UV-Induced DNA Damage

Abstract

Background

The mechanisms by which DNA damage triggers suppression of transcription of a large number of genes are poorly understood. DNA damage rapidly induces a release of the positive transcription elongation factor b (P-TEFb) from the large inactive multisubunit 7SK snRNP complex. P-TEFb is required for transcription of most class II genes through stimulation of RNA polymerase II elongation and cotranscriptional pre-mRNA processing.

Methodology/principal findings

We show here that caffeine prevents UV-induced dissociation of P-TEFb as well as transcription inhibition. The caffeine-effect does not involve PI3-kinase-related protein kinases, because inhibition of phosphatidylinositol 3-kinase family members (ATM, ATR and DNA-PK) neither prevents P-TEFb dissociation nor transcription inhibition. Finally, caffeine prevention of transcription inhibition is independent from DNA damage.

Conclusion/significance

Pharmacological prevention of P-TEFb/7SK snRNP dissociation and transcription inhibition following UV-induced DNA damage is correlated.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View