Mantle Structure and Flow Across the Continent‐Ocean Transition of the Eastern North American Margin: Anisotropic S‐Wave Tomography
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Mantle Structure and Flow Across the Continent‐Ocean Transition of the Eastern North American Margin: Anisotropic S‐Wave Tomography

Abstract

Abstract: Little has been seismically imaged through the lithosphere and mantle at rifted margins across the continent‐ocean transition. A 2014–2015 community seismic experiment deployed broadband seismic instruments across the shoreline of the eastern North American rifted margin. Previous shear‐wave splitting along the margin shows several perplexing patterns of anisotropy, and by proxy, mantle flow. Neither margin parallel offshore fast azimuths nor null splitting on the continental coast obviously accord with absolute plate motion, paleo‐spreading, or rift‐induced anisotropy. Splitting measurements, however, offer no depth constraints on anisotropy. Additionally, mantle structure has not yet been imaged in detail across the continent‐ocean transition. We used teleseismic S, SKS, SKKS, and PKS splitting and differential travel times recorded on ocean‐bottom seismometers, regional seismic networks, and EarthScope Transportable Array stations to conduct joint isotropic/anisotropic tomography across the margin. The velocity model reveals a transition from fast, thick, continental keel to low velocity, thinned lithosphere eastward. Imaged short wavelength velocity anomalies can be largely explained by edge‐driven convection or shear‐driven upwelling. We also find that layered anisotropy is prevalent across the margin. The anisotropic fast polarization is parallel to the margin within the asthenosphere. This suggests margin parallel flow beneath the plate. The lower oceanic lithosphere preserves paleo‐spreading‐parallel anisotropy, while the continental lithosphere has complex anisotropy reflecting several Wilson cycles. These results demonstrate the complex and active nature of a margin which is traditionally considered tectonically inactive.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View