Changes in the saltation flux following a step‐change in macro‐roughness
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Changes in the saltation flux following a step‐change in macro‐roughness

Published Web Location

https://doi.org/10.1002/esp.4362
Abstract

Abstract: The effect of a step change in macro‐roughness on the saltation process under sediment supply limited conditions was examined in the atmospheric boundary layer. For an array of roughness elements of roughness density λ = 0.045 (λ = total element frontal area/total surface area of the array) the horizontal saltation flux was reduced by 90% (±7%) at a distance of ≈150 roughness element heights into the array. This matches the value predicted using an empirical design model and provides confidence that it can be effectively used to engineer roughness arrays to meet sand flux reduction targets. Measurements of the saltation flux characteristics in the vertical dimension, including: saltation layer decay (e‐folding) height and particle size, revealed that with increasing distance into the array, the rate of mass flux change with increasing height decreased notably, and (geometric) mean particle diameter decreased. The distribution of the saltation mass flux in the vertical remains exponential in form with increasing distance into the roughness array, and the e‐folding height increases as well as increasing at a greater rate as particle diameter diminishes. The increase in e‐folding height suggests the height of saltating particles is increasing along with their mean speed. This apparent increase in mean speed is likely due to the preferential removal, or sequestration, of the slower moving particles across the size spectrum, as they travel through the roughness array. Copyright © 2018 John Wiley & Sons, Ltd.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View