Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Excited state mean-field theory without automatic differentiation

Published Web Location

https://doi.org/10.1063/5.0003438
Abstract

We present a formulation of excited state mean-field theory in which the derivatives with respect to the wave function parameters needed for wave function optimization (not to be confused with nuclear derivatives) are expressed analytically in terms of a collection of Fock-like matrices. By avoiding the use of automatic differentiation and grouping Fock builds together, we find that the number of times we must access the memory-intensive two-electron integrals can be greatly reduced. Furthermore, the new formulation allows the theory to exploit the existing strategies for efficient Fock matrix construction. We demonstrate this advantage explicitly via the shell-pair screening strategy with which we achieve a cubic overall cost scaling. Using this more efficient implementation, we also examine the theory's ability to predict charge redistribution during charge transfer excitations. Using the coupled cluster as a benchmark, we find that by capturing orbital relaxation effects and avoiding self-interaction errors, excited state mean field theory out-performs other low-cost methods when predicting the charge density changes of charge transfer excitations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View