Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Using dynamic mode decomposition to predict the dynamics of a two-time non-equilibrium Green’s function

Abstract

Computing the numerical solution of the Kadanoff–Baym equations, a set of nonlinear integral differential equations satisfied by the two-time Green's functions derived from many-body perturbation theory for a quantum many-body system away from equilibrium, is a challenging task. Recently, we have successfully applied dynamic mode decomposition (DMD) to construct a data driven reduced order model that can be used to extrapolate the time-diagonal of a two-time Green's function from numerical solutions of the KBE within a small time window. In this paper, we extend the previous work and use DMD to predict off-diagonal elements of the two-time Green's function. We partition the two-time Green's function into a number of one-time functions along the diagonal and subdiagonals of the two-time window as well as in horizontal and vertical directions. We use DMD to construct separate reduced order models to predict the dynamics of these one-time functions in a two-step procedure. We extrapolate along diagonal and several subdiagonals within a subdiagonal band of a two-time window in the first step. In the second step, we use DMD to extrapolate the Green's function outside of the sub-diagonal band. We demonstrate the efficiency and accuracy of this approach by applying it to a two-band Hubbard model problem.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View