Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Micro/Nanorobotics: from Locomotion to Biomedical Applications

Abstract

Robotics has markedly extended the reach of human beings in sensing, manipulating, and transforming the world around us. One of the most inspiring challenges in science and technology is to extend our capacity with tiny robots towards operations at the micro/nanoscales, a dimension where we can directly interact with fundamental biological building blocks. This thesis is devoted to advancing micro/nanorobotics to extend human being’s capacities in following three themes, with a special focus being given to biomedical applications. The first theme focuses on design and fabrication of bio-inspired un-tethered nanorobots with efficient locomotion, adaptive operation, collective regulation, and eventually biological function towards operation in whole blood. The second theme explores the versatility of functional micro/nanorobots to perform diverse tasks including writing (nanolithography), reading (superresolution imaging), destroying (warfare agents), and repairing (surface cracks), all at the micro/nanoscale. The third theme employs self-propelling microrobot as an active delivery technique that autonomously and precisely transports the therapeutic agents inside live animal’s gastrointestinal tract, improving therapeutic efficacy for bacterial infection treatment. This technique opens the door for micro/nanorobots as an active delivery platform for medical treatment and is promising for a wide range of personalized diagnostic and therapeutic applications. Ultimately, micro/nanorobots has the potential to change the game of science, engineering, and medicine by extending our capacity at the micro/nanoscale. The novel applications presented in this thesis are just a few examples showing the power of micro/nanorobots, with countless more avenues waiting to be explored towards living and active matter, and eventually artificial intelligence and synthetic life at the micro/nanoscale.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View