Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Identification of Host Cytosolic Sensors and Bacterial Factors Regulating the Type I Interferon Response to Legionella pneumophila

Abstract

Legionella pneumophila is a gram-negative bacterial pathogen that replicates in host macrophages and causes a severe pneumonia called Legionnaires' Disease. The innate immune response to L. pneumophila remains poorly understood. Here we focused on identifying host and bacterial factors involved in the production of type I interferons (IFN) in response to L. pneumophila. It was previously suggested that the delivery of L. pneumophila DNA to the host cell cytosol is the primary signal that induces the type I IFN response. However, our data are not easily reconciled with this model. We provide genetic evidence that two RNA-sensing proteins, RIG-I and MDA5, participate in the IFN response to L. pneumophila. Importantly, these sensors do not seem to be required for the IFN response to L. pneumophila DNA, whereas we found that RIG-I was required for the response to L. pneumophila RNA. Thus, we hypothesize that bacterial RNA, or perhaps an induced host RNA, is the primary stimulus inducing the IFN response to L. pneumophila. Our study also identified a secreted effector protein, SdhA, as a key suppressor of the IFN response to L. pneumophila. Although viral suppressors of cytosolic RNA-sensing pathways have been previously identified, analogous bacterial factors have not been described. Thus, our results provide new insights into the molecular mechanisms by which an intracellular bacterial pathogen activates and also represses innate immune responses.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View