Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Chemical characterization of water‐soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006

Abstract

Online measurements of water-soluble organic carbon (WSOC) aerosols were made using a particle-into-liquid sampler (PILS) combined with a total organic carbon (TOC) analyzer at a rural site in the Pearl River Delta region, China, in July 2006. A macroporous nonionic (DAX-8) resin was used to quantify hydrophilic and hydrophobic WSOC, which are defined as the fractions of WSOC that penetrated through and retained on the DAX-8 column, respectively. Laboratory calibrations showed that hydrophilic WSOC (WSOCHPI) included low-molecular aliphatic dicarboxylic acids and carbonyls, saccharides, and amines, while hydrophobic WSOC (WSOCHPO) included longer-chain aliphatic dicarboxylic acids and carbonyls, aromatic acids, phenols, organic nitrates, cyclic acids, and fulvic acids. On average, total WSOC (TWSOC) accounted for 60% of OC, and WSOCHPO accounted for 60% of TWSOC. Both WSOC HIP and WSOCHPO increased with photochemical aging determined from the NOx/NOy ratio. In particular, the average WSOCHPO mass was found to increase by a factor of five within a timescale of ∼10 hours, which was substantially larger than that of WSOCHPI (by a factor of 2-3). The total increase in OC mass with photochemical aging was associated with the large increase in WSOCHPO mass. These results, combined with the laboratory calibrations, suggest that significant amounts of hydrophobic organic compounds (likely containing large carbon numbers) were produced by photochemical processing. By contrast, water-insoluble OC (WIOC) mass did not exhibit significant changes with photochemical aging, suggesting that chemical transformation of WIOC to WSOC was not a dominant process for the production of WSOC during the study period. Copyright 2009 by the American Geophysical Union.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View