Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Seeing invisible light: 2-photon microperimetry to measure visual function

Abstract

Purpose

The accuracy of conventional visual function tests, which emit visible light, decreases in patients with corneal scars, cataracts, and vitreous hemorrhages. In contrast, infrared (IR) light exhibits greater tissue penetrance than visible light and is less susceptible to optical opacities. We therefore compared conventional visual function tests against infrared 2-phton microperimetry (2PM-IR) in a subject with a brunescent nuclear sclerotic and posterior subcapsular cataract before and after cataract surgery.

Methods

Testing using infrared light microperimetry from a novel device (2PM-IR), visible light microperimetry from a novel device (2PM-Vis), conventional microperimetry, and the cone contrast threshold (CCT) test were performed before and after cataract surgery.

Results

Retinal sensitivity assessed using 2PM-IR, 2PM-Vis, and cMP improved by 3.4 dB, 17.4 dB, and 18 dB, respectively. Cone contrast threshold testing improved for the S-cone, M-cone, and l-cone by 111, 14, and 30.

Conclusions and importance

2PM-IR, unlike conventional visual function tests, showed minimal variability in retinal sensitivity before and after surgery. Thus, IR visual stimulation may provide a more accurate means of measuring neurosensory retinal function by circumventing optical media opacities, aiding in the diagnosis of early macular disease.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View