Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Artificial Intelligence-based CT Assessment of Bronchiectasis: The COPDGene Study.

Abstract

Background CT is the standard method used to assess bronchiectasis. A higher airway-to-artery diameter ratio (AAR) is typically used to identify enlarged bronchi and bronchiectasis; however, current imaging methods are limited in assessing the extent of this metric in CT scans. Purpose To determine the extent of AARs using an artificial intelligence-based chest CT and assess the association of AARs with exacerbations over time. Materials and Methods In a secondary analysis of ever-smokers from the prospective, observational, multicenter COPDGene study, AARs were quantified using an artificial intelligence tool. The percentage of airways with AAR greater than 1 (a measure of airway dilatation) in each participant on chest CT scans was determined. Pulmonary exacerbations were prospectively determined through biannual follow-up (from July 2009 to September 2021). Multivariable zero-inflated regression models were used to assess the association between the percentage of airways with AAR greater than 1 and the total number of pulmonary exacerbations over follow-up. Covariates included demographics, lung function, and conventional CT parameters. Results Among 4192 participants (median age, 59 years; IQR, 52-67 years; 1878 men [45%]), 1834 had chronic obstructive pulmonary disease (COPD). During a 10-year follow-up and in adjusted models, the percentage of airways with AARs greater than 1 (quartile 4 vs 1) was associated with a higher total number of exacerbations (risk ratio [RR], 1.08; 95% CI: 1.02, 1.15; P = .01). In participants meeting clinical and imaging criteria of bronchiectasis (ie, clinical manifestations with ≥3% of AARs >1) versus those who did not, the RR was 1.37 (95% CI: 1.31, 1.43; P < .001). Among participants with COPD, the corresponding RRs were 1.10 (95% CI: 1.02, 1.18; P = .02) and 1.32 (95% CI: 1.26, 1.39; P < .001), respectively. Conclusion In ever-smokers with chronic obstructive pulmonary disease, artificial intelligence-based CT measures of bronchiectasis were associated with more exacerbations over time. Clinical trial registration no. NCT00608764 © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Schiebler and Seo in this issue.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View