Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Coupling between slow waves and sharp-wave ripples engages distributed neural activity during sleep in humans.

Abstract

Hippocampal-dependent memory consolidation during sleep is hypothesized to depend on the synchronization of distributed neuronal ensembles, organized by the hippocampal sharp-wave ripples (SWRs, 80 to 150 Hz), subcortical/cortical slow-wave activity (SWA, 0.5 to 4 Hz), and sleep spindles (SP, 7 to 15 Hz). However, the precise role of these interactions in synchronizing subcortical/cortical neuronal activity is unclear. Here, we leverage intracranial electrophysiological recordings from the human hippocampus, amygdala, and temporal and frontal cortices to examine activity modulation and cross-regional coordination during SWRs. Hippocampal SWRs are associated with widespread modulation of high-frequency activity (HFA, 70 to 200 Hz), a measure of local neuronal activation. This peri-SWR HFA modulation is predicted by the coupling between hippocampal SWRs and local subcortical/cortical SWA or SP. Finally, local cortical SWA phase offsets and SWR amplitudes predicted functional connectivity between the frontal and temporal cortex during individual SWRs. These findings suggest a selection mechanism wherein hippocampal SWR and cortical slow-wave synchronization governs the transient engagement of distributed neuronal populations supporting hippocampal-dependent memory consolidation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View