Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Electronic Theses and Dissertations bannerUC Santa Barbara

Harnessing the Power of Furfuryl Cations: The Aza-Piancatelli Rearrangement and Beyond

Abstract

Harnessing the Power of Furfuryl Cations:

The Aza-Piancatelli Rearrangement and Beyond

by

Gesine Kerstin Veits

The ubiquity of amine functional groups in all of nature as well as a large majority of pharmaceutically active molecules makes methodologies capable of quickly constructing carbon-nitrogen bonds invaluable. Reactions capable of constructing these highly desirable bonds in addition to introducing molecular complexity are highly sought-after. Therefore we set out to develop a novel cascade rearrangement of furylcarbinols, a sustainable starting material, to 4-aminocyclopentenones, the aza-Piancatelli rearrangement.

Inspired by Piancatelli's rearrangement of furylcarbinols with water to form 4-hydroxycyclopentenones for the synthesis of prostaglandins, we explored the rearrangement with amine nucleophiles to access valuable 4-aminocyclopentenones. The product-forming cascade is initiated by dysprosium trifluoromethanesulfonate, a relatively underdeveloped Lewis acid catalyst. Activation results in the formation of a furfuryl cation (oxocarbenium ion) that is intercepted by an amine nucleophile and terminates in a 4π conrotatory electrocyclization establishing the observed trans-stereochemistry. The chemistry was initially developed with aniline nucleophiles, and was later extended to substituted hydroxylamines. Mechanistic investigations of the aza-Piancatelli rearrangement have shown that an off-cycle binding of the dysprosium catalyst and the amine nucleophile controls the rate, as observed by a Hammett plot. However, the selectivity of the rearrangement is determined by the ability of a nucleophile to efficiently capture the oxocarbenium ion upon its formation.

The value of the aza-Piancatelli rearrangement has been highlighted by the synthesis of an hNK1 inhibitor and by efforts toward the total synthesis of homoharringtonine, a pharmaceutical drug approved for the treatment of chronic myeloid leukemia. Additionally, a Piancatelli rearrangement of macrocyclic furylcarbinols, to be applied to the total synthesis of coralloidolide F, has been explored.

Finally, chiral phosphoric acids such as (R)-TRIP have been found to be catalysts for the aza-Piancatelli rearrangement capable of inducing enantioselectivity. This is the first example of asymmetric cascade rearrangements of its kind.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View