Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Great Gray Owls hunting voles under snow hover to defeat an acoustic mirage

Abstract

How do Great Gray Owls (Strix nebulosa) capture voles (Cricetidae) through a layer of snow? As snow is a visual barrier, the owls locate voles by ear alone. To test how snow absorbs and refracts vole sound, we inserted a loudspeaker under the snowpack and analysed sound from the loudspeaker, first buried, then unburied. Snow attenuation coefficients rose with frequency (0.3 dB cm-1 at 500 Hz, 0.6 dB cm-1 at 3 kHz) such that low-frequency sound transmitted best. The Great Gray Owl has the largest facial disc of any owl, suggesting they are adapted to use this low-frequency sound. We used an acoustic camera to spatially localize sound source location, and show that snow also refracts prey sounds (refractive index: 1.16). To an owl not directly above the prey, this refraction creates an 'acoustic mirage': prey acoustic position is offset from its actual location. Their hunting strategy defeats this mirage because they hover directly over prey, which is the listening position with least refraction and least attenuation. Among all birds, the Great Gray Owl has the most extreme wing morphologies associated with quiet flight. These extreme wing traits may function to reduce the sounds of hovering, with implications for bioinspiration.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View