Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Electronic Theses and Dissertations bannerUC Santa Cruz

Applications of Holographic Spacetime

Creative Commons 'BY-NC' version 4.0 license
Abstract

Here we present an overview of the theory of holographic spacetime (HST), originally devised and primarily developed by Tom Banks and Willy Fischler, as well as its various applications and predictions for cosmology and particle phenomenology. First we cover the basic theory and motivation for holographic spacetime and move on to present the latest developments therein as of the time of this writing. Then we indicate the origin of the quantum degrees of freedom in the theory and then present a correspondence with low energy effective field theory.

Further, we proceed to show the general origins of inflation and the cosmic microwave background (CMB) within the theory of HST as well as predict the functional forms of two and three point correlation functions for scalar and tensor curvature fluctuations in the early universe. Next, we constrain the theory parameters by insisting on agreement with observational bounds on the scalar spectral index of CMB fluctuations from the Planck experiment as well as theoretical bounds on the number of e-folds of inflation.

Finally, we argue that HST predicts specific gauge structures for the low-energy effective field theory at the present era and proceed to construct a viable supersymmetric model extension. Constraints on model parameters and couplings are then calculated by numerically minimizing the theory's scalar potential and comparing the resultant model mass spectra to current observational limits from the LHC SUSY searches.

In the end we find that the low-energy theory, while presenting a little hierarchy problem, is fully compatible with current observational limits. Additionally, the high-energy underlying theory is generically compatible with observational constraints stemming from inflation, and predictions on favored model parameters are given.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View