Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Cyb5r3 links FoxO1-dependent mitochondrial dysfunction with β-cell failure

Abstract

Objective

Diabetes is characterized by pancreatic β-cell dedifferentiation. Dedifferentiating β cells inappropriately metabolize lipids over carbohydrates and exhibit impaired mitochondrial oxidative phosphorylation. However, the mechanism linking the β-cell's response to an adverse metabolic environment with impaired mitochondrial function remains unclear.

Methods

Here we report that the oxidoreductase cytochrome b5 reductase 3 (Cyb5r3) links FoxO1 signaling to β-cell stimulus/secretion coupling by regulating mitochondrial function, reactive oxygen species generation, and nicotinamide actin dysfunction (NAD)/reduced nicotinamide actin dysfunction (NADH) ratios.

Results

The expression of Cyb5r3 is decreased in FoxO1-deficient β cells. Mice with β-cell-specific deletion of Cyb5r3 have impaired insulin secretion, resulting in glucose intolerance and diet-induced hyperglycemia. Cyb5r3-deficient β cells have a blunted respiratory response to glucose and display extensive mitochondrial and secretory granule abnormalities, consistent with altered differentiation. Moreover, FoxO1 is unable to maintain expression of key differentiation markers in Cyb5r3-deficient β cells, suggesting that Cyb5r3 is required for FoxO1-dependent lineage stability.

Conclusions

The findings highlight a pathway linking FoxO1 to mitochondrial dysfunction that can mediate β-cell failure.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View