Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Comparing the cardiac autonomic activity profile of daytime naps and nighttime sleep

Abstract

Heart rate variability (HRV) is a reliable technique to evaluate autonomic activity and shows marked changes across a night of sleep. Previous nighttime sleep findings report changes in HRV during non-rapid eye movement sleep (NREM), which have been associated with cardiovascular health benefits. Daytime sleep, however, has been linked with both positive and negative cardiovascular outcomes. Yet, no studies have directly compared HRV profiles during an ecologically-valid daytime nap in healthy, well-rested adults to that of nighttime sleep. Using a within-subjects design, 32 people took a daytime nap and slept overnight in the lab at least one week apart; both sleep sessions had polysomnography, including electrocardiography (ECG), recorded. We measured inter-beat intervals (RR), total power (TP), low frequency power (LF; .04-.15 Hz), and high frequency power (HF; .15-.40 Hz) components of HRV during NREM and rapid eye movement (REM) sleep. Compared to the nap, we found longer RR intervals and decreased heart rate during the night for both Stage 2 and SWS and increased TP, LF and HF power during nighttime Stage 2 sleep only; however, no differences in the LFHF ratio or normalized HF power were found between the nap and the night. Also, no differences in REM sleep between the nap and night were detected. Similar relationships emerged when comparing the nap to one cycle of nighttime sleep. These findings suggest that longer daytime naps, with both SWS and REM, may provide similar cardiovascular benefits as nocturnal sleep. In light of the on-going debate surrounding the health benefits and/or risks associated with napping, these results suggest that longer daytime naps in young, healthy adults may support cardiac down-regulation similar to nighttime sleep. In addition, napping paradigms may serve as tools to explore sleep-related changes in autonomic activity in both healthy and at-risk populations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View