Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Epigenetic Genome Mining of an Endophytic Fungus Leads to the Pleiotropic Biosynthesis of Natural Products

Abstract

The small-molecule biosynthetic potential of most filamentous fungi has remained largely unexplored and represents an attractive source for the discovery of new compounds. Genome sequencing of Calcarisporium arbuscula, a mushroom-endophytic fungus, revealed 68 core genes that are involved in natural product biosynthesis. This is in sharp contrast to the predominant production of the ATPase inhibitors aurovertin B and D in the wild-type fungus. Inactivation of a histone H3 deacetylase led to pleiotropic activation and overexpression of more than 75 % of the biosynthetic genes. Sampling of the overproduced compounds led to the isolation of ten compounds of which four contained new structures, including the cyclic peptides arbumycin and arbumelin, the diterpenoid arbuscullic acid A, and the meroterpenoid arbuscullic acid B. Such epigenetic modifications therefore provide a rapid and global approach to mine the chemical diversity of endophytic fungi.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View