Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Positive Feedback Regulation of Type I IFN Production by the IFN-Inducible DNA Sensor cGAS

Abstract

Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View