Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Universal gravothermal evolution of isolated self-interacting dark matter halos for velocity-dependent cross-sections

Published Web Location

https://arxiv.org/abs/2204.06568
No data is associated with this publication.
Abstract

We study the evolution of isolated self-interacting dark matter halos using spherically symmetric gravothermal equations allowing for the scattering cross-section to be velocity dependent. We focus our attention on the large class of models where the core is in the long mean free path regime for a substantial time. We find that the temporal evolution exhibits an approximate universality that allows velocity-dependent models to be mapped onto velocity-independent models in a well-defined way using the scattering time-scale computed when the halo achieves its minimum central density. We show how this time-scale depends on the halo parameters and an average cross-section computed at the central velocity dispersion when the central density is minimum. The predicted collapse time is fully defined by the scattering time-scale, with negligible variation due to the velocity dependence of the cross-section. We derive new self-similar solutions that provide an analytic understanding of the numerical results.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item