Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system

Abstract

Iron electrocoagulation (Fe-EC) is an effective technology to remove arsenic (As) from groundwater used for drinking. A commonly noted limitation of Fe-EC is fouling or passivation of electrode surfaces via rust accumulation over long-term use. In this study, we examined the effect of removing electrode surface layers on the performance of a large-scale (10,000 L/d capacity) Fe-EC plant in West Bengal, India. We also characterized the layers formed on the electrodes in active use for over 2 years at this plant. The electrode surfaces developed three distinct horizontal sections of layers that consisted of different minerals: calcite, Fe(III) precipitates and magnetite near the top, magnetite in the middle, and Fe(III) precipitates and magnetite near the bottom. The interior of all surface layers adjacent to the Fe(0) metal was dominated by magnetite. We determined the impact of surface layer removal by mechanical abrasion on Fe-EC performance by measuring solution composition (As, Fe, P, Si, Mn, Ca, pH, DO) and electrochemical parameters (total cell voltage and electrode interface potentials) during electrolysis. After electrode cleaning, the Fe concentration in the bulk solution increased substantially from 15.2 to 41.5 mg/L. This higher Fe concentration led to increased removal of a number of solutes. For As, the concentration reached below the 10 μg/L WHO MCL more rapidly and with less total Fe consumed (i.e. less electrical energy) after cleaning (128.4 μg/L As removed per kWh) compared to before cleaning (72.9 μg/L As removed per kWh). Similarly, the removal of P and Si improved after cleaning by 0.3 mg/L/kWh and 1.1 mg/L/kWh, respectively. Our results show that mechanically removing the surface layers that accumulate on electrodes over extended periods of Fe-EC operation can restore Fe-EC system efficiency (concentration of solute removed/kWh delivered). Since Fe release into the bulk solution substantially increased upon electrode cleaning, our results also suggest that routine electrode maintenance can ensure robust and reliable Fe-EC performance over year-long timescales.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View