Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy

Abstract

Alzheimer's disease (AD), the most common form of dementia, is characterized by the abnormal accumulation of amyloid plaques and hyperphosphorylated tau aggregates, as well as microgliosis. Hemizygous missense variants in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) are associated with elevated risk for developing late-onset AD. These variants are hypothesized to result in loss of function, mimicking TREM2 haploinsufficiency. However, the consequences of TREM2 haploinsufficiency on tau pathology and microglial function remain unknown. We report the effects of partial and complete loss of TREM2 on microglial function and tau-associated deficits. In vivo imaging revealed that microglia from aged TREM2-haploinsufficient mice show a greater impairment in their injury response compared with microglia from aged TREM2-KO mice. In transgenic mice expressing mutant human tau, TREM2 haploinsufficiency, but not complete loss of TREM2, increased tau pathology. In addition, whereas complete TREM2 deficiency protected against tau-mediated microglial activation and atrophy, TREM2 haploinsufficiency elevated expression of proinflammatory markers and exacerbated atrophy at a late stage of disease. The differential effects of partial and complete loss of TREM2 on microglial function and tau pathology provide important insights into the critical role of TREM2 in AD pathogenesis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View