Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Limitations of clinical trial sample size estimate by subtraction of two measurements

Published Web Location

https://doi.org/10.1002/sim.9244
Abstract

In planning randomized clinical trials (RCTs) for diseases such as Alzheimer's disease (AD), researchers frequently rely on the use of existing data obtained from only two time points to estimate sample size via the subtraction of baseline from follow-up measurements in each subject. However, the inadequacy of this method has not been reported. The aim of this study is to discuss the limitation of sample size estimation based on the subtraction of available data from only two time points for RCTs. Mathematical equations are derived to demonstrate the condition under which the obtained data pairs with variable time intervals could be used to adequately estimate sample size. The MRI-based hippocampal volume measurements from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Monte Carlo simulations (MCS) were used to illustrate the existing bias and variability of estimates. MCS results support the theoretically derived condition under which the subtraction approach may work. MCS also show the systematically under- or over-estimated sample sizes by up to 32.27 % bias. Not used properly, such subtraction approach outputs the same sample size regardless of trial durations partly due to the way measurement errors are handled. Estimating sample size by subtracting two measurements should be treated with caution. Such estimates can be biased, the magnitude of which depends on the planned RCT duration. To estimate sample sizes, we recommend using more than two measurements and more comprehensive approaches such as linear mixed effect models.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View