Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation.

Abstract

To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and β-catenin activity. β-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and β-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3β and the SWI/SNF gene Arid1b to increase β-catenin. Knockdown of Arid1b or Gsk3β in Stat3(fl/fl);Nf1(fl/fl);DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/β-catenin pathway inhibitors in neurofibroma therapeutic trials.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View