Skip to main content
eScholarship
Open Access Publications from the University of California

Geometric transitions and D-term SUSY breaking

Abstract

We propose a new way of using geometric transitions to study metastable vacua in string theory and certain confining gauge theories. The gauge theories in question are N=2 supersymmetric theories deformed to N=1 by superpotential terms. We first geometrically engineer supersymmetry-breaking vacua by wrapping D5 branes on rigid 2-cycles in noncompact Calabi-Yau geometries, such that the central charges of the branes are misaligned. In a limit of slightly misaligned charges, this has a gauge theory description, where supersymmetry is broken by Fayet-Iliopoulos D-terms. Geometric transitions relate these configurations to dual Calabi-Yaus with fluxes, where H_RR, H_NS and dJ are all nonvanishing. We argue that the dual geometry can be effectively used to study the resulting non-supersymmetric, confining vacua

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View