Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides

Published Web Location

https://www.nature.com/articles/s41567-018-0362-y#Ack1
No data is associated with this publication.
Abstract

Monolayer transition metal dichalcogenides (TMDCs) are promising two-dimensional (2D) semiconductors for application in optoelectronics. Their optical properties are dominated by two series of photo-excited exciton states—A (XA) and B (XB) 1,2 —that are derived from direct interband transitions near the band extrema. These exciton states have large binding energies and strong optical absorption 3–6 , and form an ideal system to investigate many-body effects in low dimensions. Because spin–orbit coupling causes a large splitting between bands of opposite spins, XA and XB are usually treated as spin-polarized Ising excitons, each arising from interactions within a specific set of states induced by interband transitions between pairs of either spin-up or spin-down bands (TA or TB). Here, by using monolayer MoS 2 as a prototypical system and solving the first-principles Bethe–Salpeter equations, we demonstrate a strong intravalley exchange interaction between TA and TB, indicating that XA and XB are mixed states instead of pure Ising excitons. Using 2D electronic spectroscopy, we observe that an optical excitation of the lower-energy TA induces a population of the higher-energy TB, manifesting the intravalley exchange interaction. This work elucidates the dynamics of exciton formation in monolayer TMDCs, and sheds light on many-body effects in 2D materials.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item