Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Anesthetic Protection of Neurons Injured by Hypothermia and Rewarming

Abstract

Background

Mild hypothermia is neuroprotective after cerebral ischemia but surgery involving profound hypothermia (PH, temperature less than 18°C) is associated with neurologic complications. Rewarming (RW) from PH injures hippocampal neurons by glutamate excitotoxicity, N-methyl-D-aspartate receptors, and intracellular calcium. Because neurons are protected from hypoxia-ischemia by anesthetic agents that inhibit N-methyl-D-aspartic acid receptors, we tested whether anesthetics protect neurons from damage caused by PH/RW.

Methods

Organotypic cultures of rat hippocampus were used to model PH/RW injury, with hypothermia at 4°C followed by RW to 37°C and assessment of cell death 1 or 24 h later. Cell death and intracellular Ca were assessed with fluorescent dye imaging and histology. Anesthetic agents were present in the culture media during PH and RW or only RW.

Results

Injury to hippocampal CA1, CA3, and dentate neurons after PH and RW involved cell swelling, cell rupture, and adenosine triphosphate (ATP) loss; this injury was similar for 4 through 10 h of PH. Isoflurane (1% and 2%), sevoflurane (3%) and xenon (60%) reduced cell loss but propofol (3 μM) and pentobarbital (100 μM) did not. Isoflurane protection involved reduction in N-methyl-D-aspartate receptor-mediated Ca influx during RW but did not involve γ-amino butyric acid receptors or KATP channels. However, cell death increased over the next day.

Conclusion

Anesthetic protection of neurons rewarmed from 4°C involves suppression of N-methyl-D-aspartate receptor-mediated Ca overload in neurons undergoing ATP loss and excitotoxicity. Unlike during hypoxia/ischemia, anesthetic agents acting predominantly on γ-aminobutyric acid receptors do not protect against PH/RW. The durability of anesthetic protection against cold injury may be limited.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View