Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Superconducting Nanobridge SQUID Magnetometer for Spin Sensing

Abstract

As the cutting edge of science and technology pushes towards smaller length scales, sensing technologies with nanoscale precision become increasingly important. In this thesis I will discuss the optimization and application of a 3D nanobridge SQUID magnetometer for studying solid state spin systems, in particular for sensing impurity spins in diamond. Solid state spins have proposed applications in memory and computation for both classical and quantum computing. Isolated spins typically have longer coherence times, making them attractive qubit candidates, but necessitating the development of very sensitive detectors for readout.

This 3D nanobridge SQUID combines the exquisite spatial sensitivity of a traditional nanoSQUID with a large non-linearity on par with a tunnel junction SQUID. This allows us to build a highly sensitive magnetometer which can act as both an efficient flux transducer as well as a nearly quantum limited lumped Josephson Parametric Amplifier. We show that the device has a minimum flux noise of 17 ± 0.9 nΦ0/Hz1/2 with only a factor of ∼2.5 increase in flux noise up to 61 mT. A second generation device with a smaller capacitor achieves field tolerance up to 75 mT. The maximal bandwidth values range from 25-40 MHz in the parametric amplification regime to 70 MHz in the linear regime. This combination of large bandwidth, low flux noise, large flux coupling and field tolerance make this sensor a promising candidate for near-single-spin dynamics measurements.

In the last part of this thesis we begin to demonstrate the utility of a nanobridge SQUID magnetometer for characterizing spin systems in the solid state. We use the magnetometer to measure the decay characteristics of P1 centers in diamond. We find that the spin-lattice relaxation time varies with temperature, with an order of magnitude decrease in the decay time between 25 mK and 370 mK.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View