Skip to main content
eScholarship
Open Access Publications from the University of California

Engineering isoprenoids production in metabolically versatile microbial host Pseudomonas putida

Abstract

With the increasing need for microbial bioproduction to replace petrochemicals, it is critical to develop a new industrial microbial workhorse that improves the conversion of lignocellulosic carbon to biofuels and bioproducts in an economically feasible manner. Pseudomonas putida KT2440 is a promising microbial host due to its capability to grow on a broad range of carbon sources and its high tolerance to xenobiotics. In this study, we engineered P. putida KT2440 to produce isoprenoids, a vast category of compounds that provide routes to many petrochemical replacements. A heterologous mevalonate (MVA) pathway was engineered to produce potential biofuels isoprenol (C5) and epi-isozizaene (C15) for the first time in P. putida. We compared the difference between three different isoprenoid pathways in P. putida on isoprenol production and achieved 104 mg/L of isoprenol production in a batch flask experiment through optimization of the strain. As P. putida can natively consume isoprenol, we investigated how to prevent this self-consumption. We discovered that supplementing L-glutamate in the medium can effectively prevent isoprenol consumption in P. putida and metabolomics analysis showed an insufficient energy availability and an imbalanced redox status during isoprenol degradation. We also showed that the engineered P. putida strain can produce isoprenol using aromatic substrates such as p-coumarate as the sole carbon source, and this result demonstrates that P. putida is a valuable microbial chassis for isoprenoids to achieve sustainable biofuel production from lignocellulosic biomass.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View