Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Hydrologic dynamics of the Greenland Ice Sheet from remote sensing and field measurements

Abstract

The current need for forecasting Greenland Ice Sheet contributions to global sea level rise is complicated by the lack of understanding of ice sheet hydrology. The proportion of meltwater contributing to sea level rise, as well as the pathways transporting meltwater on, through, and out of the ice sheet, are not well understood. Remote sensing of hydrologic dynamics in combination with small-scale fieldwork allows examination of broad spatial and temporal trends in the Greenland hydrologic system responding to a changing climate. This dissertation reviews the current state of knowledge on Greenland Ice Sheet hydrology, and examines three components of the Greenland hydrologic system: (1) fjord sediment plumes as an indicator of meltwater output, (2) supraglacial streamflow as an indicator of meltwater input to the ice sheet, and (3) moulin distribution and formation as a mechanism diverting meltwater from the surface of the ice sheet to the bed.

Buoyant sediment plumes that develop in fjords downstream of outlet glaciers are controlled by numerous factors, including meltwater runoff. MODIS retrievals of sediment plume concentration show a strong regional and seasonal response to meltwater production on the ice sheet surface, despite limitations in fjords with rapidly calving glaciers, providing a tool for tracking meltwater release to the ocean.

Summertime field observations and high-resolution satellite imagery reveal extensive supraglacial river networks across the southwestern ablation zone transporting large volumes of meltwater to moulins, yet these features remain poorly mapped and their discharges unquantified. A GIS modeling framework is developed to spatially adapt Manning’s equation for use with high-resolution WorldView-2 imagery to map supraglacial river discharge.

Moulins represent connections between surface meltwater on the Greenland ice sheet and subglacial drainage networks, where increased meltwater can enhance ice sliding dynamics. A new high-resolution moulin dataset in western Greenland created from WorldView-1/2 imagery in the 2012 record melt year is used to assess moulin distribution and formation. Moulin locations show a significantly different distribution compared to geospatial variables in the entire study area, with moulins forming in areas of thinner ice, higher velocity and extensional strain rate, as well as lower surface elevation and slope, and higher bed elevation and slope.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View