Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Highest Frequency Detection of FRB 121102 at 4–8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope

Abstract

We report the first detections of the repeating fast radio burst source FRB 121102 above 5.2 GHz. Observations were performed using the 4-8 GHz receiver of the Robert C. Byrd Green Bank Telescope with the Breakthrough Listen digital backend. We present the spectral, temporal, and polarization properties of 21 bursts detected within the first 60 minutes of a total of 6 hr of observations. These observations comprise the highest burst density yet reported in the literature, with 18 bursts being detected in the first 30 minutes. A few bursts clearly show temporal sub-structure with distinct spectral properties. These sub-structures superimpose to provide an enhanced peak signal-to-noise ratio at higher trial dispersion measures. Broad features occur in ∼1 GHz wide subbands that typically differ in peak frequency between bursts within the band. Finer-scale structures (∼10-50 MHz) within these bursts are consistent with the structure expected from Galactic diffractive interstellar scintillation. The bursts exhibit nearly 100% linear polarization, and a large average rotation measure of 9.359 ± 0.012 ×104 rad m-2 (in the observer's frame). No circular polarization was found for any burst. We measure an approximately constant polarization position angle in the 13 brightest bursts. The peak flux densities of the reported bursts have average values (0.2 ± 0.1 Jy) similar to those seen at lower frequencies (<3 GHz), while the average burst widths (0.64 ± 0.46 ms) are relatively narrower.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View