Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

The Janus face of proliferating plasmablasts in dengue and COVID-19 infections.

Abstract

INTRODUCTION: B cells play an integral role in the immune response to both dengue fever and COVID-19. Prior scRNAseq analyses of peripheral plasmablasts in COVID-19 have revealed a heterogeneous population with distinct cell subsets associated with proliferation; prior studies in patients with dengue fever have likewise shown the presence of proliferative pre-plasmablasts in the circulation. These findings may have implications for disease severity. In this study, we sought to gain a mechanistic understanding of the intracellular processes in naive and memory B cells that are associated with and may lead to an expanded proliferative plasmablast population in the circulation. METHODS: We analyzed age-controlled (pediatric and adult), peripheral blood mononuclear cell scRNAseq datasets from patients infected with either dengue (primary or secondary) or COVID-19 (non-severe or severe) from previously published studies. Our preliminary analysis showed that pediatric patients with dengue and adults with COVID-19 had an expanded proliferative plasmablast (p-PB) population. By contrast, neither the adults with dengue nor the children with COVID-19 in our dataset had p-PBs. We used this distinctive preliminary signature to guide our analyses design and expanded our analyses to naive and memory B cells. RESULTS: In age/disease conditions with and without p-PBs, we found differences in cell sensing and activation, including via the B cell receptor and downstream signal transduction. Likewise, inflammation was mediated differently: relative to groups without p-PBs, those with p-PBs had increased expression of interferon response and S100 genes (particularly severe COVID-19). Furthermore, several transcription factors at the nexus of activation, inflammation, and cell fate decisions were expressed differently in groups with and without p-PBs. DISCUSSION: We used dengue and COVID-19 infections in adult and pediatric patients (focusing on naive B, memory B, and plasmablast cells) as a model to better understand the mechanisms that may give rise to p-PB populations in the circulation. Our results indicate that a more pro-inflammatory state in naive and memory B cells correlated with - and could influence the generation of- proliferating plasmablasts. Further exploration of these mechanisms will have implications for immune memory, vaccine development, and post-viral autoimmune syndromes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View