The California-Kepler Survey. VI. Kepler Multis and Singles Have Similar Planet and Stellar Properties Indicating a Common Origin∗ ∗ Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of California, and California Institute of Technology, the University of Hawaii, and NASA.
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The California-Kepler Survey. VI. Kepler Multis and Singles Have Similar Planet and Stellar Properties Indicating a Common Origin∗ ∗ Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of California, and California Institute of Technology, the University of Hawaii, and NASA.

Abstract

The California-Kepler Survey (CKS) catalog contains precise stellar and planetary properties for the \Kepler\ planet candidates, including systems with multiple detected transiting planets ("multis") and systems with just one detected transiting planet ("singles," although additional planets could exist). We compared the stellar and planetary properties of the multis and singles in a homogenous subset of the full CKS-Gaia catalog. We found that sub-Neptune sized singles and multis do not differ in their stellar properties or planet radii. In particular: (1.) The distributions of stellar properties $M_\star$, [Fe/H], and $v\mathrm{sin}i$ for the Kepler sub Neptune-sized singles and multis are statistically indistinguishable. (2.) The radius distributions of the sub-Neptune sized singles and multis with $P > 3$ days are indistinguishable, and both have a valley at $\sim1.8~R_\oplus$. However, there are significantly more detected short-period ($P < 3$ days), sub-Neptune sized singles than multis. The similarity of the host star properties, planet radii, and radius valley for singles and multis suggests a common origin. The similar radius valley, which is likely sculpted by photo-evaporation from the host star within the first 100 Myr, suggests that planets in both singles and multis spend much of the first 100 Myr near their present, close-in locations. One explanation that is consistent with the similar fundamental properties of singles and multis is that many of the singles are members of multi-planet systems that underwent planet-planet scattering.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View