Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Evaluation of Peroxides and Chlorine Oxides as Disinfectants for Chemical Sterilization of Gnotobiotic Rodent Isolators.

Abstract

Gnotobiotic animal research has expanded markedly over the past decade. Although germ-free animals were first described more than 100 y ago, little evidence-based guidance is available on best operational procedures. A key aspect of gnotobiotic technology is the sterilization of animal enclosures, most commonly flexible vinyl film isolators. The objective of this study was to determine the most effective methods for chemical sterilization of gnotobiotic isolators and associated equipment. As test microbes, we used bacteria from 4 different accidental isolator contaminations that occurred in a gnotobiotic core facility. Identification by 16S ribotyping revealed facultative anaerobic firmicutes, including several Paenibacillus and Bacillus species, and obligate aerobic actinobacteria, namely Micrococcus luteus, among the contaminants. We selected 6 products commonly used for disinfecting hospital rooms, kitchens, and veterinary facilities to represent chlorine-oxide- and peroxide-based disinfectants and tested the hypothesis that these 2 classes are equally effective. However, evaluation of bactericidal and sporicidal activity in liquid cultures revealed that chlorine oxide-based disinfectants were more effective than peroxide-based disinfectants. In both groups, various products effectively sterilized gnotobiotic isolators by fogging in field tests, although bactericidal concentrations were markedly higher than those in suspension cultures, and effectiveness was contact-time-dependent. In addition, in both groups, some disinfectants were excessively corrosive to ferrous metals and acrylic. These results demonstrate that no single disinfectant has all desirable properties and that the different characteristics of disinfectants must be balanced during their selection. However, chlorine oxide-based disinfectants were generally more effective and less corrosive than peroxide-based products.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View