Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

A workflow for generating multi-strain genome-scale metabolic models of prokaryotes

Abstract

Genome-scale models (GEMs) of bacterial strains' metabolism have been formulated and used over the past 20 years. Recently, with the number of genome sequences exponentially increasing, multi-strain GEMs have proved valuable to define the properties of a species. Here, through four major stages, we extend the original Protocol used to generate a GEM for a single strain to enable multi-strain GEMs: (i) obtain or generate a high-quality model of a reference strain; (ii) compare the genome sequence between a reference strain and target strains to generate a homology matrix; (iii) generate draft strain-specific models from the homology matrix; and (iv) manually curate draft models. These multi-strain GEMs can be used to study pan-metabolic capabilities and strain-specific differences across a species, thus providing insights into its range of lifestyles. Unlike the original Protocol, this procedure is scalable and can be partly automated with the Supplementary Jupyter notebook Tutorial. This Protocol Extension joins the ranks of other comparable methods for generating models such as CarveMe and KBase. This extension of the original Protocol takes on the order of weeks to multiple months to complete depending on the availability of a suitable reference model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View