Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Design, Fabrication, and Evaluation of Superhydrophobic (SHPo) Surfaces for Drag Reduction in Turbulent Boundary Layer Flows

Abstract

Sustaining a gas layer on them in liquid, superhydrophobic (SHPo) surfaces have attracted enormous attention due to the possibility of reducing friction drag in numerous flow applications. Although many SHPo surfaces proved to reduce drag significantly (e.g., > 10%) in microchannel flows and certain SHPo surfaces proved to have an unprecedentedly large slip length (e.g., > 100 microns), a significant drag reduction is still elusive in turbulent flows that reflect most applications, such as watercraft in marine environment. Recognizing the gas layer (called plastron) as the key and studying its robustness under water of varying depths, we first conclude that the SHPo surfaces capable of a significant drag reduction cannot maintain the plastron indefinitely if submerged deeper than a few centimeters. By developing a high-resolution shear sensor for centimeters-size sample surfaces and using silicon SHPo surfaces that keep plastron more robust than others, we obtain up to ~25% drag reduction in turbulent boundary layer flows at Reynolds numbers up to 1.1x107. Obtained at a high-speed water tunnel and a high-speed tow tank, the results also indicate that the drag reduces more with increasing Reynolds number, corroborating the numerical studies in the literature. Moreover, we develop and conduct SHPo drag experiments using a real boat in marine conditions for the first time, achieving ~20% drag reduction. Finally, a scalable fabrication process is developed for scale-up manufacturing of both passive and semi-active SHPo surfaces. For the semi-active SHPo surfaces, i.e., SHPo surfaces with self-regulating gas restoration capability, we propose and demonstrate a gas generation mechanism that does not require any external power input.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View