Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia

Abstract

Calcium ions (Ca(2+)) function as universal second messengers in eukaryotic cells, including immune cells. Ca(2+) is crucial for peripheral T-lymphocyte activation and effector functions, and influences thymocyte selection and motility in the developing thymus. However, the role of Ca(2+) signalling in early T-lymphocyte development is not well understood. Here we show that the inositol triphosphate receptors (IP3Rs) Ca(2+) ion channels are required for proliferation, survival and developmental progression of T-lymphocyte precursors. Our studies indicate that signalling via IP3Rs represses Sox13, an antagonist of the developmentally important transcription factor Tcf-1. In the absence of IP3R-mediated Ca(2+) signalling, repression of key Notch transcriptional targets--including Hes1--fail to occur in post β-selection thymocytes, and mice develop aggressive T-cell malignancies that resemble human T-cell acute lymphoblastic leukemia (T-ALL). These data indicate that IP3R-mediated Ca(2+) signalling reinforces Tcf-1 activity to both ensure normal development and prevent thymocyte neoplasia.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View