Skip to main content
eScholarship
Open Access Publications from the University of California

Predicting Aerosol Reactivity Across Scales: from the Laboratory to the Atmosphere

Abstract

To fully utilize the results of laboratory-based studies of the chemistry of model atmospheric aerosol reactions, it is important to understand how to relate them to the conditions found in nature. In this study, we have taken a validated reaction-diffusion mechanism for oxidation of C30H62 aerosol by OH under flow tube conditions and examined its predictions for another experimental regime (continuous flow stirred tank reactor) and for the atmosphere, spanning alkane aerosol viscosities from liquid to semisolid. The results show that under OH-concentration-limited and aerosol-mixing-limited conditions, it should be possible to select laboratory experimental conditions where many aspects of the particle phase and volatile product chemistry under atmospheric conditions can be revealed. If the OH collision and organic diffusion rates are comparable, however, reactivity is highly sensitive to the details of both OH concentration and internal mixing. The characteristics of the transition between limiting conditions provide key insights into which parts of the reaction mechanism dominate in the various kinetic regimes.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View