Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Constraints on slow slip from landsliding and faulting

Abstract

The discovery of slow-slip has radically changed the way we understand the relative movement of Earth’s tectonic plates and the accumulation of stress in fault zones that fail in large earthquakes. Prior to the discovery of slow-slip, faults were thought to relieve stress either through continuous aseismic sliding, as is the case for continental creeping faults, or in near instantaneous failure. Aseismic deformation reflects fault slip that is slow enough that both inertial forces and seismic radiation are negligible. The durations of observed aseismic slip events range from days to years, with displacements of up to tens of centimeters. These events are not unique to a specific depth range and occur on faults in a variety of tectonic settings. This aseismic slip can sometimes also trigger more rapid slip somewhere else on the fault, such as small embedded asperities. This is thought to be the mechanism generating observed Low Frequency Earthquakes (LFEs) and small repeating earthquakes.

I have preformed a series of studies to better understanding the nature of tectonic faulting which are compiled here. The first is entitled “3D surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide”, and was originally published in the Journal of Geophysical Research in 2016. In order to understand how landslides respond to environmental forcing, we quantify how the hydro-mechanical forces controlling the Slumgullion Landslide express themselves kinematically in response to the infiltration of seasonal snowmelt. The well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ∼2 cm/day is an ideal natural laboratory due to its large spatial extent and rapid deformation rates. The lateral boundaries of the landslide consist of strike-slip fault features, which over time have built up large flank ridges.

The second study compiled here is entitled “Temporal variation of intermediate-depth earthquakes around the time of the M9.0 Tohoku-oki earthquake” and was originally published in Geophysical Research Letters in 2017. The temporal evolution of intermediate depth seismicity before and after the 2011 M 9.0 Tohoku-oki earthquake reveals interactions

between plate interface slip and deformation in the subducting slab. I investigate seismicity rate changes in the upper and lower planes of the double seismic zone beneath northeast Japan. The average ratio of upper plane to lower plane activity and the mean deep aseismic slip rate both increased by factor of two. An increase of down-dip compression in the slab resulting from coseismic and postseismic deformation enhanced seismicity in the upper plane, which is dominated by events accommodating down-dip shortening from plate unbending.

In the third and final study included here I use geodetic measurements to place a quantitative upper bound on the size of the slow slip accompanying large bursts of quasi-periodic tremors and LFEs on the Parkfield section of the SAF. We use a host of analysis methods to try to isolate the small signal due to the slow slip and characterize noise properties. We find that in addition to subduction zones, transform faults are also capable of producing ETSs. However, given the upper-bounds from our analysis, surface geodetic measurements of this slow slip is likely to remain highly challenging.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View