Skip to main content
eScholarship
Open Access Publications from the University of California

Temporal and SFQ pulse-streams encoding for area-efficient superconducting accelerators

Published Web Location

https://dl.acm.org/doi/10.1145/3503222.3507765
No data is associated with this publication.
Abstract

Superconducting technology is a prime candidate for the future of computing. However, current superconducting prototypes are limited to small-scale examples due to stringent area constraints and complex architectures inspired from voltage-level encoding in CMOS; this is at odds with the ps-wide Single Quantum Flux (SFQ) pulses used in superconductors to carry information. In this work, we propose a wave-pipelined Unary SFQ (U-SFQ) architecture that leverages the advantages of two data representations: pulse-streams and Race Logic (RL). We introduce novel building blocks such as multipliers, adders, and memory cells, which leverage the natural properties of SFQ pulses to mitigate area constraints. We then design and simulate three popular hardware accelerators: i) a Processing Element (PE), typically used in spatial architectures; ii) A dot-product-unit (DPU), one of the most popular accelerators in artificial neural networks and digital signal processing (DSP); and iii) A Finite Impulse Response (FIR) filter, a popular and computationally demanding DSP accelerator. The proposed U-SFQ building blocks require up to 200× fewer JJs compared to their SFQ binary counterparts, exposing an area-delay trade-off. This work mitigates the stringent area constraints of superconducting technology.

Item not freely available? Link broken?
Report a problem accessing this item