Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Membrane Proteins Can Have High Kinetic Stability

Published Web Location

https://doi.org/10.1021/ja407232b
Abstract

Approximately 10% of water-soluble proteins are considered kinetically stable with unfolding half-lives in the range of weeks to millenia. These proteins only rarely sample the unfolded state and may never unfold on their respective biological time scales. It is still not known whether membrane proteins can be kinetically stable, however. Here we examine the subunit dissociation rate of the trimeric membrane enzyme, diacylglycerol kinase, from Escherichia coli as a proxy for complete unfolding. We find that dissociation occurs with a half-life of at least several weeks, demonstrating that membrane proteins can remain locked in a folded state for long periods of time. These results reveal that evolution can use kinetic stability to regulate the biological function of membrane proteins, as it can for soluble proteins. Moreover, it appears that the generation of kinetic stability could be a viable target for membrane protein engineering efforts.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View