Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Multiparametric MRI characterization of knee articular cartilage and subchondral bone shape in collegiate basketball players

Published Web Location

https://doi.org/10.1002/jor.24851
Abstract

Magnetic resonance imaging (MRI) is commonly used to evaluate the morphology of the knee in athletes with high-knee impact; however, complex repeated loading of the joint can lead to biochemical and structural degeneration that occurs before visible morphological changes. In this study, we utilized multiparametric quantitative MRI to compare morphology and composition of articular cartilage and subchondral bone shape between young athletes with high-knee impact (basketball players; n = 40) and non-knee impact (swimmers; n = 25). We implemented voxel-based relaxometry to register all cases to a single reference space and performed a localized compositional analysis of T - and T 2 -relaxation times on a voxel-by-voxel basis. Additionally, statistical shape modeling was employed to extract differences in subchondral bone shape between the two groups. Evaluation of cartilage composition demonstrated a significant prolongation of relaxation times in the medial femoral and tibial compartments and in the posterolateral femur of basketball players in comparison to relaxation times in the same cartilage compartments of swimmers. The compositional analysis also showed depth-dependent differences with prolongation of the superficial layer in basketball players. For subchondral bone shape, three total modes were found to be significantly different between groups and related to the relative sizes of the tibial plateaus, intercondylar eminences, and the curvature and concavity of the patellar lateral facet. In summary, this study identified several characteristics associated with a high-knee impact which may expand our understanding of local degenerative patterns in this population.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View